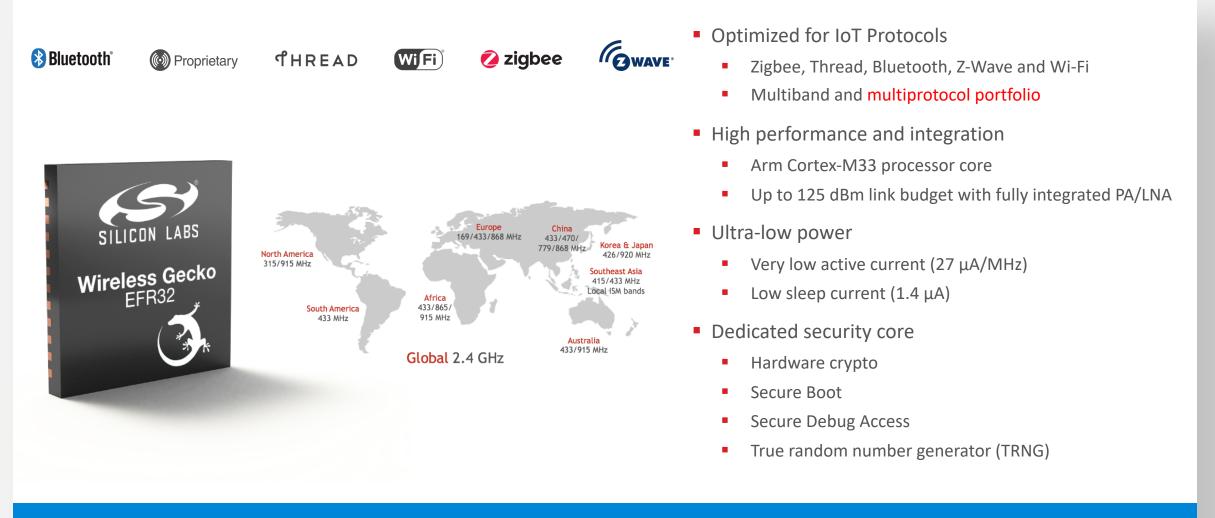
Tech Talks LIVE Schedule – Presentation will begin shortly

Silicon Labs LIVE: Wireless Connectivity Tech Talks

Торіс	Date	
Overview of Silicon Labs Wi-Fi Solutions (Redpine Signals Wi-Fi Solutions)	Thursday, May 28	
Optimize a Battery Supply Using the Energy Friendly PMIC	Tuesday, June 2	
Zigbee Software Structure: Learn about Plugins and Callbacks	Thursday, June 4	
Multiprotocol Wireless: Real Application of Dynamic Multiprotocol	Tuesday, June 9	
Wireless Coexistence	Thursday, June 11	
Bluetooth Software Structure: Learn the APIs and State Machines	Tuesday, June 16	
Add a Peripheral to a Project in No Time: With 32-bit Peripheral Github Library	Thursday, June 18	
OpenThread Software Structure: Learn about Resources and Examples	Tuesday, June 23	

Find Past Recorded Sessions at: <u>https://www.silabs.com/support/training</u>

WELCOME


Silicon Labs LIVE: Wireless Connectivity Tech Talks

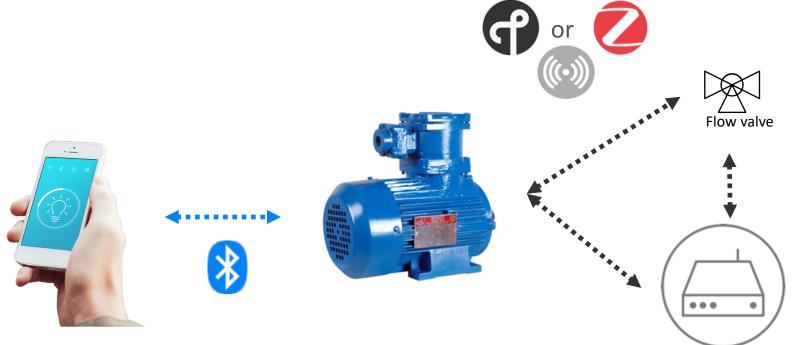
Dynamic Multiprotocol

JUNE 2020

Wireless Gecko Series 2 Platform

Application Optimized for the IoT

Silicon Labs Multiprotocol Wireless Stacks


	移 Bluetooth [°]		THREAD	💋 zigbee	Proprietary	
Application	Customer Application		Customer Application	Customer Application		
	GATT (profiles/services)	Mesh Models (e.g. lighting)	Application Layer (e.g. dotdot, CoAP)	Application Profile (e.g HA1.2, ZLL, dotdot)	Customer Application	
Network/ Transport	Bluetooth LE Core		UDP		Connect Stack	Customer Proprietary Stack
		Bluetooth Mesh Core	IPv6, Mesh Routing	Zigbee Core Stack		
			6LoWPAN			
Link	Bluetooth Link Layer		IEEE 802.15.4 MAC	IEEE 802.15.4 MAC	IEEE 802.15.4 like MAC	
Physical	Bluetooth PHY (2.4 GHz)		IEEE 802.15.4 PHY (2.4 GHz)	IEEE 802.15.4 PHY (2.4 GHz)	Proprietary PHY (2.4 GHz or Sub-GHz)	
Platform 5	RAIL		RAIL	RAIL RA		AIL
	Common Bootloader		Common Bootloader	Common Bootloader	Common Bootloader	
 Developed & Tested externation and in-house Tested externation deployed at 				 Inter-stack po manager 	wer 🔹 (Common syntax

Multiprotocol Definitions

Multiprotocol Type	Definition
Programmable	Device programmed with either Protocol A or Protocol B in manufacturing
Switched	Application switches between Protocol A and Protocol B via bootloader
Dynamic	Application runs simultaneously (time-sliced) Protocol A and Protocol B
Concurrent	Application runs both Protocol A and Protocol B in a single radio (on same RF channel)
Multiradio	Application runs multiple protocols with multiple radios at the same time (no time-slicing)

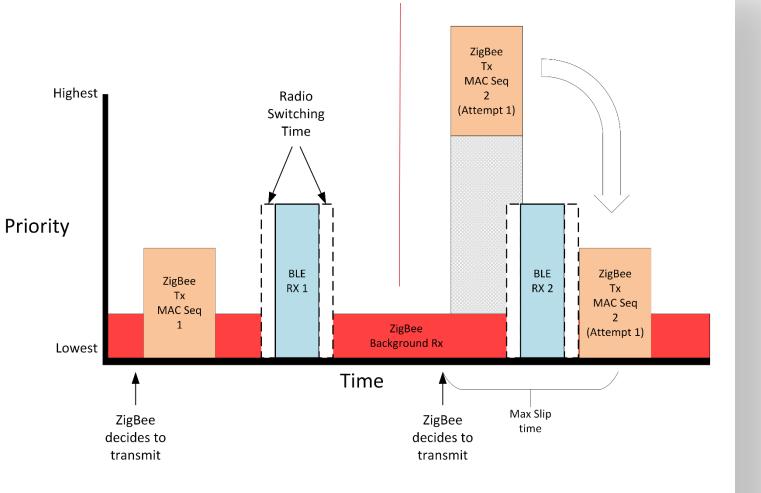
Use Case: Dynamic Multiprotocol

Time-sliced operation between
 2 stacks

Key Terms for Dynamic Multiprotocol

- Radio Task
- Radio Config
- Radio Scheduler Operations
 - Background Receive
 - Scheduled Receive
 - Scheduled Transmit
 - Yield
- Priorities
 - 1. Bluetooth LE scheduled transmit
 - 2. Bluetooth LE scheduled receive
 - 3. Zigbee scheduled transmit
 - 4. Zigbee background receive

Slip Time

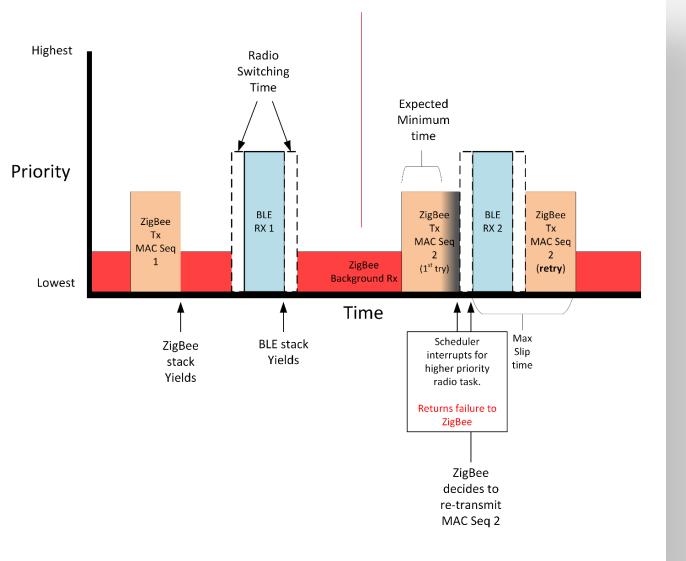

Example of Priority Scheduling

Zigbee TX 1:

 Zigbee TX event with scheduled BLE RX1 event – no conflict

Zigbee TX 2:

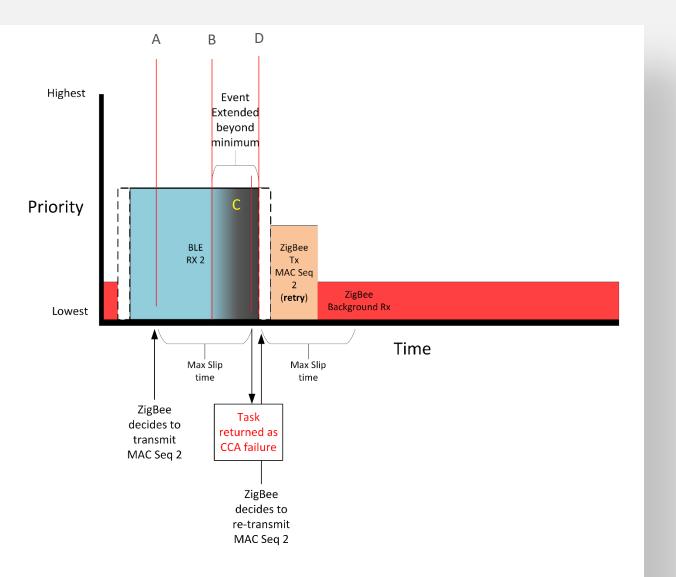
- Scheduler determines there is not enough time to complete before BLE RX2
- Scheduler determines that Zigbee TX2 can wait until after BLE RX2 due to allowed slip time (indicated by Zigbee stack)


Example of Priority Interruption

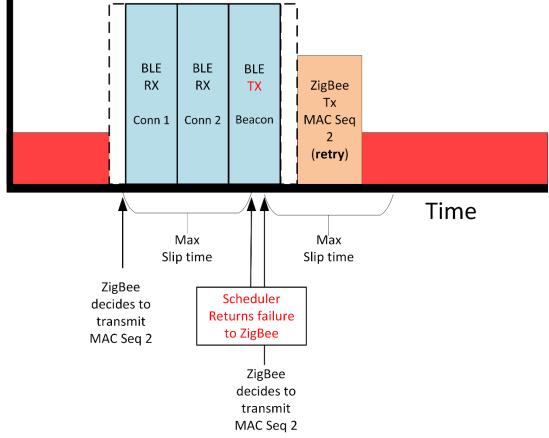
Zigbee TX 1:

 Zigbee TX event with scheduled BLE RX1 event – no conflict

ZigBee TX 2:


- Scheduler thinks there is time for ZigBee TX
- Zigbee TX2 event takes longer (e.g. long random backoff, does not yield in time)
- Collision
- Radio scheduler interrupts Zigbee event, returns failure to Zigbee stack
- BLE RX2 event occurs
- Zigbee stack retries TX2

Higher Priority Task Extended


Higher priority task (BLE RX2) takes longer than expected

- Zigbee decides to send packet
- Radio scheduler accepts send request, assumes BLE RX2 will complete before end of Zigbee TX2 event slip time
- BLE RX2 takes longer than expected
- It exceeds the slip time of the Zigbee TX2 request
- Error is returned to the Zigbee stack
- Zigbee stack decides to retransmit the packet

Higher Priority Task without Interruption

Highest Multiple Bluetooth connections and a beacon Creates period where Zigbee cannot transmit or receive, even with slip time Priority Zigbee asks scheduler to schedule TX2 task Scheduler accepts event, even though it will fail Circumstances may change Lowest Stack retry would happen too guickly after failure TX2 event queued, fails after slip time expires Zigbee stack retries, better likelihood of success with new slip time ZigBee

Choosing an MG Device

Increasing Features

MG12 / MG21

Highest integration Large memory for dual-protocol and OTA Variants with highest security

MG13

Balance of features, size, power, cost Supports dual-protocol

MG22

Focused on simple low cost Zigbee node applications

- Optimized for simple end nodes
- Lowest power
- Lowest cost
- New Security Features

Don't forget the Series 2 MGM210x Wireless Modules

MGM210P

Optimized for a wide range of applications

MGM210L Optimized for Smart LED bulbs

Worldwide certifications

- Reduce certification costs
- Mitigate risk
- Accelerate time-to-market
- Best-in-class security
- High temperature rating up to 125 °C
- Software & support enables easy migration from modules to SoCs
- Field upgradeability ensures product longevity
- Protocols supported:
 - Zigbee
 - Thread
 - Bluetooth LE & mesh
 - Dynamic multiprotocol

Get Started with Development

- Useful resources:
 - Multiprotocol website page (<u>https://www.silabs.com/wireless/multiprotocol</u>)
 - Mesh networks performance website page (<u>https://www.silabs.com/products/wireless/learning-center/mesh-performance</u>)
 - AN724 Designing for Multiple Networks on a Single Zigbee Chip (<u>https://www.silabs.com/documents/public/applicatio</u> <u>n-notes/an724-multi-network.pdf</u>)

BG22 Virtual Workshop

Learn how to develop and deploy more powerful, efficient, and secure IoT products with your own BG22 Thunderboard – free for all registrants!

New Sessions Open for June

10:00AM --11:30 AM CST - T, W, Th

(Other sessions available for Asia Pacific and Europe)

Register today! <u>https://www.silabs.com/about-us/events/virtual-bluetooth-workshop</u>

Join Us for a Smart Home Webinar

Register at <u>https://www.silabs.com/applications/smart-home</u></u>

Thank you

silabs.com