Tech Talks LIVE Schedule – Presentation will begin shortly

Silicon Labs LIVE:

Wireless Connectivity Tech Talks

Topic	Date
Optimize a Battery Supply Using the Energy Friendly PMIC	Tuesday, June 2
Zigbee Software Structure: Learn about Plugins and Callbacks	Thursday, June 4
Multiprotocol Wireless: Real Application of Dynamic Multiprotocol	Tuesday, June 9
Wireless Coexistence	Thursday, June 11
Bluetooth Software Structure: Learn the APIs and State Machines	Tuesday, June 16
Add a Peripheral to a Project in No Time: With 32-bit Peripheral Github Library	Thursday, June 18
OpenThread Software Structure: Learn about Resources and Examples	Tuesday, June 23
Talk with an Alexa: Using Zigbee to Connect with an Echo Plus	Thursday, June 25

Fill out the survey for a chance to win a SLWSTK-COEXBP co-existence eval board!

Find Past Recorded Sessions at: https://www.silabs.com/support/training

WELCOME

Silicon Labs LIVE:

Wireless Connectivity Tech Talks

Silicon Labs Wireless Co-Existence

JUNE 2020

2.4GHz ISM Band Coexistence Challenge

- Multiple wireless protocols share the same
 2.4GHz ISM Band: Wi-FI, Bluetooth, and IEEE
 802.15.4 (ZigBee, Thread)
- These wireless protocols have different modulation schemes, channel frequencies and bandwidth but overlap when collocated
- Signals from one wireless protocol look like unwanted noise for the other protocols
- If the desired receive signal is weaker than the noise, the radio will be unable to properly receive messages

Coexistence Challenges Are Increasing

 Historically, wireless devices seemed to "just work" even without specifically addressing coexistence issues

• Unfortunately, this is no longer the case due to three trends:

Greater device integration & radio colocation

Increased Wi-Fi transmit power (+30dBm)

Larger throughput needed for Wi-Fi streaming

Coexistence Impact: Co-Channel

- 2.4 GHz IoT RX is generally blocked when the 2.4 GHz Wi-Fi interference is co—channel and stronger at the receiver than the signal being received from the remote IoT device
- Zigbee uses Clear Channel Assessment (CCA) to test the channel prior to transmit, and transmit is blocked with energy detection > -75 dBm per 802.15.4 spec

Coexistence Impact: Receiver Blocking / Selectivity

- 2.4 GHz IoT RX sensitivity is degraded by high amplitude 2.4GHz Wi-Fi
 - Even if Wi-Fi and IoT are on different channels, the Wi-Fi energy is still in-band for the LNA, AGC, Mixer, etc.
- In this example, if Wi-Fi energy is below -40 dBm, far-away Zigbee channels are unaffected.
 - This generally covers the cases where the Wi-Fi and IoT are physically separated
- Multi-protocol gateways are another story
 - High power 2.4 GHz Wi-Fi TX in the same enclosure as IoT is difficult to isolate

Coexistence Issues for End Devices

- Use Case:
 - ZigBee security system with battery powered sensors
 - Wi-Fi co-located (within radio range)
 - Wi-Fi traffic is used for streaming videos
- Customer effect:
 - Delayed or missing reports
 - Reduced battery life
- Impact:
 - High rate of retries
 - Latency due to CCA failures
- Strategies to improve performance:
 - Unmanaged Coexistence

Coexistence Issues for Gateways

- Use Case:
 - ZigBee, Bluetooth, Wi-Fi in a small form factor
 - Device used as Wi-Fi Access Point
 - Device is also used as a home IOT gateway
 - Communicates with sensors (door/window, presence, etc)
 - Communicates with lights, door locks, shade controllers, etc.
- Customer effect when 2.4G Wi-Fi is under high TX load:
 - Poor command responsiveness for Zigbee devices
 - Delayed or missing Zigbee reports
 - Dropped Bluetooth connections
 - Reduced battery life on Zigbee devices due to retries
- Strategies to Improve Performance:
 - Unmanaged coexistence
 - Managed coexistence

Why retries need to be minimized

- Battery powered devices
 - Messages from window sensors, door locks, etc. are asynchronous: they may arrive at any time
 - Key concern is battery life
 - Wi-Fi Interference leads to more retries
 - Retries lead to more power consumption
 - Short battery life = more frequent replacement

- Latency
 - Some applications have latency requirements (e.g. light must turn on in <200ms)
 - CCA failures and retries increase latency

Improving Coexistence: Unmanaged

- Frequency separation
 - If possible, select ZigBee channel as far from 2.4 GHz Wi-Fi channel as possible
 - Use Bluetooth Low Energy channel map
- Antenna Isolation
 - Provide as much isolation between IoT and 2.4 GHz Wi-Fi antennas as possible
 - If IoT and 2.4 GHz are in separate physical units, implement install guidelines for minimum clearance
- Use 20 MHz Wi-Fi bandwidth (avoid 40 MHz)
- Rely on protocol Retry Mechanisms

Unmanaged Coexistence: Bluetooth Data Channel Management

- Bluetooth Low Energy uses two types of frequency diversity
 - Advertising/beacons uses three channels low, mid, and high advertising channels
 - Connection master can dynamically configure the channel map for frequency hopping on data channels to avoid channels occupied by other protocols
- If EFR32 is the connection master:
 - gecko_cmd_le_gap_set_data_channel_classification()

Improving Coexistence: Managed

- Separate the radio activity in time
- Requires coordination between the radios
- Is there an easy way for the different radios sharing the 2.4 GHz band within a single product to communicate with each other to accomplish this?

Managed Coexistence: Packet Traffic Arbitration

- Packet Traffic Arbitration (PTA) is a *recommendation* provided in 802.15.2: "Coexistence of Wireless Personal Area Networks with Other Wireless Devices Operating in Unlicensed Frequency Bands".
- It was originally written for Bluetooth Classic/Wi-Fi coexistence and includes four different wiring configurations

Packet Traffic Arbitration Basics

- IoT device asserts REQUEST and optionally asserts the PRIORITY signal
- If the Wi-Fi device can grant airtime, it asserts the GRANT signal back to the IoT device(s)
- The Wi-Fi device is expected to stop transmitting prior to asserting GRANT, and is expected to not begin a new transmission while GRANT is asserted
- When the IoT transaction is completed, the IoT device de-asserts REQUEST and the Wi-Fi device follows by de-asserting GRANT.

Managed Coexistence: Packet Traffic Arbitration

- Because PTA is based on recommendations and not requirements, there is variability of implementation by different Wi-Fi and Bluetooth IC manufacturers.
- To mitigate against this, Silicon Labs' interface is flexible in terms of the number of signals used, signal drive, and signal polarity.
 - 1- to 3- wire supported (4-wire not supported)
 - 3-wire recommended
- We have tested our IoT radio stacks across many Wi-Fi chips from many Wi-Fi vendors
- The results show a clear benefit to using managed coexistence

NOTE: Managed coexistence (PTA) is recommended to be deployed in addition to (not in place of) the unmanaged coexistence techniques previously mentioned!

IoT Gateway – Managed Coex Example

- The IoT Gateway function is typically split between a network co-processor (NCP) and a host application processor
 - EFR32 SoCs are well suited to run the NCP firmware, which handles the low-level protocol stack functionality
 - Application-level processing is done on a resourcerich host

- Both the NCP firmware and the Gateway Application code are available as examples in our Bluetooth and Zigbee SDKs
 - Customers typically only wish to modify the application code

IoT Gateway – Managed Coex Example

- The ZigBee host application is commonly run directly on the Wi-Fi host processor
 - Because the ZigBee Gateway host application is lightweight, it can run on a Wi-Fi host processor without affecting Wi-Fi performance
 - This also provides an easy method of connectivity to the Internet

IoT Gateway – Managed Coex Example

- Connect PTA signals between the EFR32 chip and the Wi-Fi chip so that the radios can coordinate
 - Note that PTA is implemented at the MAC layer:
 Users do not have to rewrite any application code in order to use it

Managed Coexistence: Packet Traffic Arbitration (PTA)

- Use PTA signals (REQUEST, PRIORITY, and GRANT) to coordinate Wi-Fi and Zigbee radios TX and RX operations
- Dashed box represents a co-located Wi-Fi access point + ZigBee gateway
- Traffic is simultaneously pushed through the Wi-Fi link and the ZigBee network

Test conditions: Wi-Fi CH1, 20Mbps UDP, MCS7, 20MHz BW; Zigbee CH24 at 10 kbps

ZigBee RX

PTA Enabled

ZigBee TX

■ PTA Disabled

ZigBee Message Failure Rate vs. Test Conditions

Enabling PTA decreases Zigbee message failure rate from >90% to 0%, results in lower latency

Advantages of using Silicon Labs PTA solution (2)

- Dashed box represents a co-located Wi-Fi access point + ZigBee gateway
- Traffic is simultaneously pushed through the Wi-Fi link and the ZigBee network

Test conditions: Wi-Fi BW at 20 MHz, 20 Mbps; Zigbee at 10 kbps

Enabling PTA reduces Zigbee retry traffic, results in increased battery life

PTA Strategies: REQUEST PWM

- If co-located 2.4 GHz Wi-Fi TX duty cycle is high, the IoT device may not be able to hear any packets, which makes managed coexistence ineffective for IoT RX
- IoT device needs to successfully receive the preamble and sync of the incoming packet in order to determine that an IoT packet is incoming to assert REQUEST
 - Zigbee: 160us
 - Bluetooth Low Energy (1Mbps PHY): 40us
- One solution to this is to have the IoT device(s) make periodic PTA requests to establish regular listening windows during which the Wi-Fi device will not transmit
- REQUEST PWM makes receiving inbound ZigBee packets and Bluetooth advertising more deterministic. Maximum impact on the 2.4 GHz Wi-Fi throughput is the duty cycle percentage

PTA Strategies: REQUEST PWM

- Here's an example of high duty cycle Wi-Fi with successful ZigBee RX due to a 19.5ms, 20% duty cycle REQUEST PWM
- Green arrows show successfully received packets
- Red boxes surround packets that were transmitted from the remote device but not received

PTA Strategies: Priority

- For static priority, the state of the PRIORITY signal communicates the level of PRIORITY of the IoT transaction
 - Example: ZigBee TX = low priority, ZigBee RX = high priority
- For directional PRIORITY, the PRIORITY signal is either high or low for a typically 20μs duration after REQUEST asserted, but switches to low during receive operation and high during transmit operation.
- PRIORITY provides the Wi-Fi PTA master more insight into the IoT request so that it can more efficiently balance IoT requests against Wi-Fi priorities
- Our Zigbee SDK has a priority escalation feature, which can escalate a low priority request to high priority after a specified number of consecutive failures

PTA Strategies: Shared PTA

- Silicon Labs provides the ability to share the PTA among several EFR32 IoT devices
- REQUEST (and optionally PRIORITY) can be implemented with an open source or open drain driver on the EFR32 with an external pullup/pulldown resistor
- The Wi-Fi PTA master only sees a single REQUEST signal, so it doesn't care whether there are multiple IoT devices
- The EFR32 devices will poll REQUEST prior to asserting, so this also allows arbitration between the IoT protocols on the separate EFR32 devices

PTA Strategies: Radio Hold-Off

- Our stacks provide the ability to designate a Radio Hold-Off (RHO) pin
- This pin prevents the device from transmitting while asserted
- Use Cases
 - Provides a separate method of prioritizing IoT behavior between radios (Zigbee RX activity -> Bluetooth RHO)
 - Can also be useful to implement on a multi-radio design to avoid FCC co-located transmitter requirements

EFR32 PTA: Zigbee Configuration

- App Note AN1017 Zigbee Coexistence
 - An advanced version of this app note can be provided under NDA
 - Includes detailed Wi-Fi Coexistence/PTA test setup and results
- Coexistence configured via Appbuilder plugin
- Configure the GPIO to match the PTA hardware configuration and WiFi chip expectations;
 - REQUEST/GRANT/PRIORITY enabled, which pin and active high or low
 - Radio Hold-Off enable/setup
 - Default priority for RX and TX
- Example shown is PTA for single EFR32 with typical time-slotted 3-wire Wi-Fi/PTA

EFR32 PTA: Bluetooth Configuration

- App Note AN1128 Bluetooth Coexistence
 - An advanced version of this app note can be provided under NDA
 - Includes detailed Wi-Fi Coexistence/PTA test setup and results
- Coexistence configured via header file (halconfig.h)
- Configure the GPIO to match the PTA hardware configuration and WiFi chip expectations;
 - REQUEST/GRANT/PRIORITY enabled, which pin and active high or low
 - Radio Hold-Off enable/setup
 - Default priority
- Example shown is PTA for single EFR32 with typical time-slotted 3-wire Wi-Fi/PTA

```
// $[COEX]
#define HAL COEX ENABLE
                                                       (1)
#define BSP COEX REQ PIN
                                                       (10U)
#define BSP COEX REQ PORT
                                                       (gpioPortC)
#define BSP COEX REQ ASSERT LEVEL
                                                        (1)
#define HAL COEX REQ WINDOW
                                                        (50U)
#define HAL COEX REQ SHARED
                                                       (0)
#define HAL COEX REQ BACKOFF
                                                       (15U)
#define BSP COEX GNT PIN
                                                        (3U)
#define BSP COEX GNT PORT
                                                       (gpioPortF)
#define BSP COEX GNT ASSERT LEVEL
                                                       (0)
#define HAL COEX TX ABORT
                                                       (0)
#define BSP COEX PRI PIN
                                                       (12U)
#define BSP COEX PRI PORT
                                                       (gpioPortD)
#define BSP COEX PRI ASSERT LEVEL
                                                        (1)
#define HAL COEX PRIORITY DEFAULT
                                                        (1)
#define HAL COEX PRI SHARED
                                                        (0)
#define HAL COEX PWM DEFAULT ENABLED
                                                       (0)
#define HAL COEX PWM REQ PERIOD
                                                       (39U)
#define HAL COEX PWM REQ DUTYCYCLE
                                                       (20U)
#define HAL COEX PWM PRIORITY
                                                       (0)
```

Coexistence Development Kit (SLWSTK-COEXBP)

- SLWSTK-COEXBP is designed as a platform to demonstrate and prototype PTA managed coexistence with EFR32
- Supports up to three EFR32 PTA slave devices (implemented on a single WSTK each)

Supports an EFR32 based PTA master emulator or header connections to an external Wi-Fi PTA

Additional Information

- AN1017: Zigbee Coexistence with Wi-Fi https://www.silabs.com/documents/public/application-notes/an1017-coexistence-with-wifi.pdf
- AN1128: Bluetooth Coexistence with Wi-Fi https://www.silabs.com/documents/public/application-notes/an1128-bluetooth-coexistence-with-wifi.pdf
- UG350: Silicon Labs Coexistence Development Kit (SLWSTK-COEXBP)
 https://www.silabs.com/documents/public/user-guides/ug350-coexistence-development-kit.pdf
- Contact Silicon Labs Support via our Support Portal
 - Visit: https://siliconlabs.force.com

Conclusions

- Unmanaged coexistence can make IoT networks perform better when in proximity to Wi-Fi networks
- On designs with co-located 2.4 GHz radios, the combination of unmanaged and managed coexistence (PTA) can provide deterministic IoT performance by:
 - Bounding the remote retries for battery powered ZigBee nodes
 - Ensuring stable Bluetooth connections
 - Allowing the deterministic reception of Bluetooth beacons
- Silicon Labs offers built-in support for PTA on both the Bluetooth and ZigBee stacks for EFR32

Getting Started

1. Order Gecko kit(s)

SLWSTK6000B

3. Download and install Simplicity Studio.

2. Order SLWSTK-COEXBP

4. Follow the instructions in UG350.

UG350: Silicon Labs Coexistence Development Kit (SLWSTK-COEXBP)

The Coexistence Development Kit (SLWSTK-COEXBP) is a development kit designed by Silicon Labs to demonstrate coexistence between different radios transmitting in the 2.4 GHz ISM band. This document revision pertains to revision 3.0 of the SLWSTK-COEXBP kit. SLWSTK-COEXBP additionally requires

KEY POINTS

- Describes coexistence hardware and related software requirements.
- Provides step-by-step instructions for the installation and configuration of

BG22 Virtual Workshop

Learn how to develop and deploy more powerful, efficient, and secure IoT products with your own BG22 Thunderboard – free for all registrants!

New Sessions Open for June

10:00AM -11:30 AM CST - T, W, Th

(Other sessions available for Asia Pacific and Europe)

Register today! https://www.silabs.com/about-us/events/virtual-bluetooth-workshop

Q & A Session

